
A tribute to the memory of Gennadi Henkin

Henri Skoda
∗

Born in Moscow on October 26, 1942, Gennadi Henkin died in Paris on
January 19, 2016. He studied in the University of Moscow and, in 1973, he
defended his doctoral thesis in Sciences, equivalent to French HDR (Habili-
tation à diriger des recherches). He had a researcher position at the Institute
of Mathematical Economics in the Science Academy of Moscow, from 1967
to 1991.

I discovered G. Henkin’s mathematical work a long time before I met
him. The first time I read mathematical G. Henkin’s works was in the sev-
enties when I was an assistant professor at the University of Nice. At first I
have to describe the work atmosphere in mathematics and in France at the
beginning of the seventies : of course it seems nowadays unbelievable but
nevertheless it was very efficient despite the low level of material conditions.
At that time, there were no individual computers nor web. Mathematical
papers were typed by secretaries using typewriters and sent to colleagues
by the Post. Phone and television were still quite luxuries and many people
had no phone at home. It was very expensive to phone abroad and we did
it only for exceptional events, calling from the university under the control
of the administration. The mathematical research teams (especially out of
Paris in provincial cities) were generally very small in comparison to those in
the present time. In Analytic Geometry and in Several Complex Variables,
following H. Cartan’s famous theory, sheaves theory, homological methods
and geometric constructions like analytic covers, blowing up, were extremely
successful and were the most usual and popular methods in that field of re-
search, particularly in France. Lars Hörmander’s L2 methods coming from
the Theory of Partial Differential Equations [Hör1966], were not well known
and appeared as a little bit strange and artificial methods in the domain of
Complex Analysis. The best we could hope using L2-methods in bounded
pseudoconvex domains in ICn was to construct global non trivial holomor-
phic functions in L2(Ω). Mathematicians were very far from thinking they
could develop a fine theory of holomorphic functions in several variables
as the theory of Hardy spaces Hp(D) in one variable [Hoff1962], even if
some mathematicians as Léon Ehrenpreis, André Martineau [Mar1967] and
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François Norguet [And1966] had already obtained successful results with in-
tegral representations in several complex variables and would like to extend
this theory. Therefore when I learnt in the seventies (probably in 1971) that
a Russian mathematician Gennadi Henkin (not well known at that time) had
obtained global L∞ estimates for the ∂̄-equation in a strictly pseudoconvex
bounded domain in ICn [Henk1970] (a difficult problem even in the case of
the Ball), it appears as an amazing and fascinating event, like a thunder-
clap out of the clear sky. Moreover, at that time, it was very difficult to
interchange results with Russian mathematicians. The postmail needed a
lot of time. The first version of the Russian papers were written in Russian
language with Cyrillic characters and sometimes an English translation was
not easily available. Nevertheless after defending my thesis in 1972 (thèse de
doctorat d’Etat equivalent to a habilitation at that time) which used essen-
tially L. Hörmander’s L2 methods, I decided to deeply analyse G. Henkin’s
papers and to work with them.

At that time, Gennadi Henkin powerfully extended the Cauchy-Leray
formula of integral representation of holomorphic functions in a stritly con-
vex domain of ICn to arbitrary differential forms in a strictly pseudoconvex
domain. Then he mainly obtained effective, explicite and very precise in-
tegral representations for the solutions of the ∂-equation : ∂u = f in these
strictly pseudoconvex domains and also for the solutions of the tangential
Cauchy operator ∂b. He showed that it was possible to solve ∂-equation
on a strictly pseudo-convex domain of ICn with infinite uniform estimations
on the domain using an explicit integral quite simple kernel, directly re-
lated to the geometry of the domain. The kernel was completely similar
to that of the formula of Cauchy-Leray, in the strictly convex case. Ingo
Lieb and Hans Grauert [Lie1970] had obtained the same result using an E.
Ramirez de Arellano’s formula. But G. Henkin’s construction was extremely
transparent and it had a major impact on the mathematicians dealing with
complex analysis in several variables. For it opened the way to studying a
lot of problems which seemed to be quite unreachable before G. Henkin’s
decisive and founding work. At first it provides Lp and L∞ estimates up to
the boundary for the solutions of the ∂ operator. It particularly opened the
way to studying the algebra of bounded holomorphic functions and Hardy’s
spaces in several complex variables on pseudoconvex domains in ICn.

Let us now give some hints on Henkin’s construction. For (ξ, η) ∈ ICn ×
ICn, we set : 〈ξ, η〉 =

∑j=n
j=1 ξjηj .

On the set E = {(ξ, η) ∈ ICn× ICn 〈ξ, η〉 6= 0}, we consider the Cauchy-Leray
differential form defined by :

(1) µ = 〈ξ, η〉−nω′(ξ) ∧ ω(η),

where : ω′ξ) :=
∑n

j=1(−1)j−1ξj dξ1 ∧ . . . ∧ d̂ξj ∧ . . . dξn
and ω(η) := dη1 ∧ . . . ∧ dηj ∧ . . . ∧ dηn. It is easy to see that µ is closed
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and is the pullback of a closed differential form defined on the open subset
Ẽ = {([ξ], η) ∈ Pn−1 × ICn 〈ξ, η〉 6= 0} of Pn−1 × ICn where [ξ] is the line of
Pn−1 defined by ξ ∈ ICn \ {0}.

We now consider a map s of class C2 :

(2) s : (Ω× Ω) \∆ → ICn, (ζ, z) → s(ζ, z),

where ∆ is the diagonal of ICn, such that :

(3) 〈s(ζ − z), ζ − z〉 6= 0.

As s can also be considered as a section of a trivial bundle with fiber ICn, s
is usually called a section. Then the map ŝ defined by :

(4) ŝ : (Ω× Ω) \∆ → ICn × ICn, (ζ, z) → (s(ζ, z), ζ − z)),

takes its values in E.
The differential form ŝ⋆µ which is the pullback of µ by ŝ, is called the

Cauchy-Leray form associated with s. It only depends on the image of s
in Pn−1. In the following integral formulas we have to consider components
of ŝ⋆µ of appropriate bidegrees in ζ and in z but for the simplicity we do
not write explicitly these bidegrees. Indeed that immediately results from
restrictions coming from the complex dimension. Then (under very mild
supplementary assumptions on s, we omit for simplicity) for a holomorphic
function f on Ω, of class C1 on Ω̄, we have the following Cauchy-Leray
integral representation of f which essentially results from Stokes formula :

(5) f(z) = cn

∫
∂Ω

f(ζ) (ŝ⋆µ),

where z ∈ Ω and cn is a constante only depending on n (in fact we only
have to consider in (5) the component of (ŝ⋆µ) of bidegree (n, n − 1) in ζ

and degree 0 in z).
Particularly, taking for s, s = sb := ζ − z so that 〈sb, ζ− z〉 = ζ− z2 > 0

for ζ 6= z (sb is often called the Bochner-Martinelli section), we obtain for an
arbitrary open bounded domain of class C2, the Bochner-Cauchy-Martinelli
integral representation formula :

(6) f(z) = cn

∫
∂Ω

f(ζ) [
n∑

j=1

(−1)j−1 ζj − zj

ζ − z2n

∧
k 6=j

dζ̄k ∧ ω(ζ) ].

In the case of a strictly convex bounded domain Ω defined as Ω := {ζ ∈
ICn ρ(ζ) < 0} where ρ is a stricly convex function defined in a neighboorhood
of Ω̄ with dρ(ζ) 6= 0 for ζ ∈ ∂Ω, we can construct a section s such that
for (ζ, z) ∈ ∂Ω × Ω, sj(ζ, z) := ∂ρ

∂ζj
(ζ) (or s(ζ, z) = ▽ρ(ζ) or ∂ρ(ζ) =∑n

j=1 sj(ζ, z)dζj) so that s is holomorphic in z for ζ ∈ ∂Ω (and even constant
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in z). We obtain the Cauchy-Leray integral representation for holomorphic
functions on a stritly convex open set which can be written as following :

(7) f(z) = cn

∫
∂Ω

f(ζ)
∂ρ ∧ (∂∂̄ρ)n−1

〈∂ρ(ζ), ζ − z〉n
.

For a ∂̄-closed differential form f of bidegree (p, q), we have the following
Cauchy-Martinelli integral representation of f on every open bounded do-
main Ω of class C2 :

(8) c(p, q, n)f(z) = ∂̄z[

∫
Ω
f(ζ) ∧ (ŝb

⋆µ)] +

∫
∂Ω

f(ζ) ∧ (ŝb
⋆µ),

where z ∈ Ω and c(p, q, n) is a constant only depending on p, q, n. We
consider the component of (ŝb

⋆µ) of bidegree (p, q − 1) in z and of bidegree
(n−p, n−q) in ζ in the first integral (resp. of bidegree (p, q) in z and bidgree
(n− p, n− q − 1) in ζ in the second one).

Of course the term we obtain integrating on the boundary ∂Ω, is a
stumbling block to solve the ∂̄ equation. To obtain an explicite solution of
the ∂̄ equation on a stritly pseudoconvex domain Ω, the main G. Henkin’s
idea was to use an explicite homotopy between the Bochner section sb and a
section sh which is holomorphic in z when ζ ∈ ∂Ω. In the case of a strictly
convex domain he considers the preceeding section sh(ζ, z) := ▽ρ(ζ) and he
defines for t ∈ I = [0, 1], ζ ∈ ∂Ω and z ∈ Ω the homotopy function g :

(9)
g(t, ζ, z) := t sh

〈sh,ζ−z〉 + (1− t) sb
〈sb,ζ−z〉 ,

ĝ(t, ζ, z) := (g(t, ζ, z), ζ − z).

Let us observe it results from the strict convexity of the function ρ that :
Re(〈sh, ζ− z〉) = Re(〈▽ρ(ζ), ζ− z〉) > 0 for (ζ, z) ∈ ∂Ω×Ω so that g is well
defined and takes its values in E. As (modulo a numerical factor) g = sb
for t = 0 and g = sh for t = 1, a new application of Stokes Formula on the
manifold I × ∂Ω × Ω to the ∂̄-closed differential form f of bidegree (p, q)
gives :
(10)

c(p, q, n)f(z) = ∂̄z[

∫
Ω
f(ζ)∧ (ŝb

⋆µ)+

∫
I×∂Ω

f(ζ)∧ (ĝ⋆µ)]+

∫
∂Ω

f(ζ)∧ (ŝh
⋆µ).

But the basic fact is : as q ≥ 1 and as sh is holomorphic in z, the component
of (ŝh

⋆µ) of bidegree (p, q) in z is 0 for ζ ∈ ∂Ω. The third integral in (10)
vanishes. Hence, we obtain the explicite solution of the ∂̄-equation :

(11) c(p, q, n)f(z) = ∂̄z[

∫
Ω
f(ζ) ∧ (ŝb

⋆µ) +

∫
I×∂Ω

f(ζ) ∧ (ĝ⋆µ)].

As the kernels defined by (ŝb
⋆µ) and (ĝ⋆µ) in (10) are explicite and as the

kernel (ĝ⋆µ) is closely connected with the strict convexity of the boundary
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we can get precise estimations with them and prove that if f is bounded
up to the boundary then the solution of the ∂̄ is too bounded up to the
boundary. In the general case of a bounded, strictly pseudoconvex, open set
Ω := {ζ ∈ ICn ρ(ζ) < 0)} where ρ is a strictly plurisubharmonic function
defined in a neighboorhood of Ω̄ verifying dρ(ζ) 6= 0 for ζ ∈ ∂Ω, G. Henkin
constructs a global section ŝh on (Ω × Ω) \ ∆ with values in E which is
holomorphic in z for ζ ∈ ∂Ω by glueing all together the section ŝb and
local sections ŝh alongside the boundary ∂Ω obtained from the local Taylor
development at the order 2 of a defining function ρ of Ω and correcting it by
an adapted global resolution of the ∂̄-equation on a neighboorhood of Ω̄×Ω̄.

After this first pionneer G. Henkin’s work, one of the most striking re-
sults in this field of research has been the characterization of the zeros of
Nevanlinna class functions with Blaschke condition we have independently
obtained G. Henkin [Henk1975] and I ([Sko1975], [Sko1976]). Reading G.
Henkin’s writing I was pleased to see we had operated with perfectly parallel
processes and shown the obvious efficiency in this type of problems of the
concept of closed positive current due to Pierre Lelong. Let us now more
explain this link with Pierre Lelong’s work.
The Nevanlinna class N(Ω) (resp. the space Hp(Ω), 0 < p < ∞) is the set
of holomorphic functions f on Ω such that :

(12)

limsupǫ→0,ǫ>0

∫
∂Ωǫ

log+ |f | dSǫ < ∞,

resp.

limsupǫ→0,ǫ>0

∫
∂Ωǫ

|f |pdSǫ < ∞,

where for ǫ > 0, Ωǫ := {ζ ∈ ICn | ρ(ζ) < −ǫ} and dSǫ is the Euclidian area
of ∂Ωǫ. We trivially have :

(13) H∞(Ω) ⊂ Hp(Ω) ⊂ N(Ω),

for all p, where H∞(Ω) is the space of holomorphic, bounded functions in
Ω. A complex hypersurface X (with given multiplicities and singularities)
of Ω verifies the Blaschke condition if (by definition) :

(14)

∫
X

|ρ(z)| dσ(z) < +∞,

where dσ is the the area element of X. A classical result of P. Lelong
([Le1957]) states that the integral is locally well defined despite the singu-
larities of X. In the case of one variable when Ω is the unit disc, X is a
discrete sequence {aj}, j ∈ N of Ω (each aj may be repeated with multiplic-
ity) such that Blaschke condition simply means that

∑∞
j=1(1− |aj |) < +∞.

The classical theory of Hp(Ω) spaces for n = 1 states that Blaschke con-
dition characterizes the sets of zeros of functions in N(Ω) and in Hp(Ω)
for all 1 ≤ p ≤ ∞. For a given sequence verifying Blaschke condition, the
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explicite Blaschke product B = Π∞
j=1

āj
|aj |

aj−z

1−ājz
provides a bounded holomor-

phic function in Ω vanishing precisely at each aj with given multiplicities.
For n > 1 the characterisation of the sets of zeros of functions in Hp(Ω) nec-
essarily depends on p (W. Rudin [Ru1976]) and should probably be a very
intricate problem. Nevertheless, in 1975, G. Henkin and I have proved that
Blaschke condition characterizes zeros sets of functions in the Nevanlinna
class when Ω is a strictly pseudoconvex bounded domain of class C2 such
that H2(Ω, Z) = 0. It easily results from an extension to several variables
of the Jensen formula (W. Stoll, P. Lelong [Le1964] or [Le1967]) that the
condition is necessary. Of course the main difficulty is to prove the condi-
tion is sufficient that is to construct something like a ”Blaschke product” in
several complex variables.

We followed the successful Pierre Lelong’s method ([Le1964]) which built
in ICn the equivalent of the canonical Weierstrass product (that is a holomor-
phic function F in ICn of minimal growth vanishing on a given zeros set) as a
plurisubharmonic potential log |F | solving in ICn the so called today Lelong-
Poincaré equation : i

π
∂∂̄ log |F | = [X] where [X] is the current of integration

on the hypersurface X. We solved the same equation in Ω. As P. Lelong,
we more generally solved the equation i

π
∂∂̄V = T where T is a given closed

positive current of bidegree (1, 1) in Ω verifying the Blaschke condition (T
is positive if for all differential forms αj of bidegree (0, 1), 1 ≤ j ≤ n−1, the
(n, n) current in−1T ∧α1∧ ᾱ1∧α2∧ ᾱ2∧ . . .∧αn−1∧ ᾱn−1 is a positive mea-
sure). Taking for T the current of integration [X] on the hypersurface X,
P. Lelong [Le1964] proved that the solution V verifies V = log |F | for some
holomorphic function F in Ω vanishing on X with the right multiplicities.
P. Lelong’s views have also taken a prominent part in the following way. Let
ρ be a smooth strictly plurisubharmonic function defining the bounded open
set Ω = {z ∈ ICn; ρ(z) < 0}. The Blaschke condition on T can be written
as

∫
Ω−ρ(i∂∂̄ρ)n−1 ∧ T < +∞. Stokes formula provides the following equal-

ity:
∫
Ω−ρ(i∂∂̄ρ)n−1 ∧ T =

∫
Ω(i∂ρ ∧ ∂̄ρ) ∧ (i∂∂̄ρ)n−2 ∧ T < +∞. It means

that the complex tangential component of T , (i∂ρ∧ ∂̄ρ)∧ T , is a current of
bounded mass in Ω, hence it satisfies something stronger than the Blaschke
condition. This strong condition on the behaviour at the boundary of the
complex tangential component of T (found in another more restrictive form
by P. Malliavin so that I called it the ”Malliavin condition” [Mal1974]) was
the first compulsory and decisive step to solve the equation i

π
∂∂̄V = T with

the expected Nevanlinna estimate supǫ>0

∫
ρ(z)=−ǫ

V +dSǫ < +∞. Indeed us-
ing Poincaré’s classical explicite solution for the de Rham operator d we
can solve at first the equation dw = T in Ω. We consider the component
w(0,1) of w of bidegree (0, 1) which is ∂̄ closed. Then, using the preceding
bound on (i∂ρ ∧ ∂̄ρ) ∧ T , we can estimate the coefficients of w(0,1) and of

|ρ|−
1

2 ∂̄ρ∧w(0,1) and show that there are measures of bounded mass on Ω. Of
course that means once again that the complex tangential part ∂̄ρ∧w(0,1) of
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w(0,1) verifies a more restrictive condition than w(0,1). Then we have to solve
the ∂̄-equation : ∂̄u = f := w(0,1) on Ω with the appropriate estimate on u

and to take : V := 2Re u. That is the most difficult part of the construction.
We proved :

Theorem 1. Let f be a current of bidegree (0, 1) on Ω, ∂̄-closed, such that

the coefficients of f and of |ρ|−
1

2 ∂̄ρ ∧ f are bounded measures on Ω, then
there exists u ∈ L1(Ω) such that :

(15) ∂̄u = f, inΩ,

and such that u has a boundary value in L1(∂Ω) in the sense of the Stokes
formula :

(16)

∫
∂Ω

uφ =

∫
Ω
f ∧ φ+

∫
Ω
u∂̄φ,

for all forms φ of bidegree (n, n− 1) and of class C1 in Ω̄.

That means roughly speaking u and therefore V are in L1(∂Ω). To prove
this theorem we built kernels similar to those of formula (11) but which are
more symetric in the pair (ζ, z) and which highlight the value of u on the
boundary ∂Ω. For instance, in the case of the Euclidean ball of ICn, if we
apply this kernel to a holomorphic function in Ω̄ we obtain the Poisson-Szegö
reproducing kernel for the functions in the Hardy space H2(Ω).

That kind of strong estimate of the complex tangential component of
a closed positive current T (or consequently of the (0, 1) form f = w(0,1)

associated with T by the Poincaré formula) remains today as an essential
argument in the numerous researches on hard analysis about zeros of func-
tions in Hardy classes on pseudoconvex domains.
These last results had a major impact especially in France where they have
contributed to the development of schools of complex analysis in Bordeaux
with Eric Amar and Philippe Charpentier, in Toulouse with Anne Cumenge,
in Lille with Anne-Marie Chollet, in Paris with Paul Malliavin and his schol-
ars, with Pierre Dolbeault and Christine Laurent, with Nessim Sibony and
Nicolas Varopoulos, with François Norguet and Guy Roos. These results
have strongly impacted too Swedish school around Bo Berndtsson and the
American school with for instance W. Rudin, S. Krantz, R.M. Range, Y.T.
Siu.

On the other hand, using these new explicite integral kernels solving the
∂-equation, G. Henkin, J. Leiterer and other mathematicians ([Henk1984],
[Henk1988]) were able to highlight a complete new approach of the Andreotti-
Grauert theory of Stein manifolds and q-convex manifolds and to get more
precise results which were out of range before.

G. Henkin has also obtained other famous results in many other con-
nected fields of research as Theoretical Physics, Mathematical Physics, Math-
ematical Economy, Theory of Information. But we have decided to focus
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our attention on the results of the strongest importance for his international
recognition and his scientific career.

In the same vein, using constructions or integral representations as ex-
plicite as possible, he has made fundamental contributions to Integral Geom-
etry, Algebraic Geometry and Mathematical Physics through the study of
Abel’s transformation, Radon transform and Penrose transform. He has also
deeply pushed forward the understanding of the equations of Mathematical
Physics more specifically those of inverse problems.

Between 1970 and 1985, G. Henkin was living and working in Moscow
and then it was very difficult for a Russian mathematician to go out and
visit foreign countries. It’s only in June 1987 that he could participate in
a colloquium in Montpellier. He could stop in Paris and I met him for the
first time. Before I only knew his articles. I remember with some emotion
his first talk in Paris and his joy and his delight when he discovered a part
of Paris and the Seine with my family, on a sightseeing boat. It was the
beginning of a long friendship.

Then, what seemed to me quite impossible happened in 1989 : the fall of
the Berlin wall with all its consequences for the Eastern European countries.
G. Henkin could come back several times and quite longer to France. At the
end he could apply to a position in Paris 6 University where he was elected
as a full professor in 1991. He had opted to begin a foreign adventure,
leaving his country for France. He immediately collaborated to the Complex
Analysis Seminar founded by P. Lelong in the sixties and got involved in
its administration. In 1981, P. Lelong retired, but P. Dolbeault, J. M.
Trépreau and I shared the organization of the Seminar with G. Henkin. G.
Henkin played there a leading role and developed new subjects, concerning
particularly Abel’s transformation, Integral Geometry and Mathematical
Physics. So he has played a vital part in the development of Complex
Analysis in several variables related to Mathematical Physics.

For about twenty years he was supervising so many doctoral theses.
He did a magnificent job not only thanks to his high level in mathematics
but also because he was able to find new research themes accessible to our
students and was good feeling towards his students and his colleagues. Many
of his former students became full professors, associate professors or assistant
professors. I shall mention Tien-Cuong Dinh who joined us in October
2005, as a full professor after having spent seven years at the University
of Orsay. Since that time, he also took his part in the organization of
Complex Analysis Seminar. I will mention too Stéphanie Nivoche, one of
his first students who is now full professor in the University of Nice; Pascal
Dingoyan who is associate professor at Paris 6 since 1998 and Luc Pirio who,
in 2007, was the first of our team to get a position in the National Center
of Scientific Research affiliated to Rennes. I have also to remind that his
student Bruno Fabre obtained very deep results about Abel transform in
relation to P.A. Griffiths’s work and that he unfortunately died very early
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in 2010 (he was only 38 years old) before he could achieve major parts of
his work.

For many years G. Henkin was assuming too responsibility for pre-
doctoral teaching in pure mathematics, DEA (Diploma in Advanced Studies,
now called Master II), which is a key position for defending mathematics in
Paris 6 University.

In 1983, he was invited for giving a talk at the World Mathematics
Congress in Warsaw.

In 1992, his work on Shumpeter dynamics and non linear waves theory
was rewarded with Kondratiev Price of Russian Academy of Economical and
Mathematical Sciences.

In 2011, he received Stefan Bergman Price of American Mathematical
Society for all his scientific works.

He was honoured in two international colloquiums, in Paris, the first in
June 2007, the second one in October 2012.

Gennadi Henkin was above all a scientist, one of the most eminent rep-
resentatives of Complex Analysis in the world. He was also a simple, self-
effacing, always smiling man. He will continue to be for us a model of
scientific engagement and we will always keep in mind the memory of his
fruitful works and of all the vocations he has raised.
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[Lie1970] Lieb, I., Die Cauchy-Riemannschen Differentialgleichungen auf
streng pseudokonvex Gebieten, Math. Ann., 190 (1970), 6-44.

[Mal1974] Malliavin, P., Fonctions de Green d’un ouvert strictement
pseudoconvexe et classe de Nevanlinna, C.R. Acad. Sci. Paris, 278 (1974),
A141-144.

[Mar1967] Martineau, A., Equations différentielles d’ordre infini, Bull.
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